Integration with Chime
June 15, 2017
Contents
About Virtual Agents	2
Three Types of Virtual Agents	2
Deploying a Virtual Agent	3
Build Virtual Agent File	3
Customizations for Specific Integration Samples (Optional)	3
Test Virtual Agent in Sandbox (Optional)	3
Loading Virtual Agent in Chime	3
Put Virtual Agent File on Chime Server	3
Turn on Global Setting	4
A Note about Timeouts	4
Enable Individual Virtual Agent	4
Assign to a Queue	5
Development	5
C# and DLL Virtual Agents	5
Sandbox Development	6
Logging	6
Implementing the IVirtualAgent Interface	6
Load	6
Unload	6
SetPluginManager	6
GetState	7
IncomingSeekerOffer	7
SeekerConnected	7
SeekerDisconnected	8
ReceiveMessage	8
IPluginManager interface	8
Getting data	8
Actions	10

[bookmark: _Toc485300389]About Virtual Agents
Currently, Virtual Agents are the only supported means to integrate with Chime. These entities are designed to be simple enough to develop in a few days, yet powerful enough to perform a wide range of functions. Virtual Agents are designed with agent efficiency in mind and many of the tasks they can perform are intended to lower the burden of work on the agent that ultimately services the chat. Virtual Agents can be either a .cs or .dll file. The differences between these two options is covered in the “Development” section. 
[bookmark: _Toc485300390]Three Types of Virtual Agents
Virtual Agents should be thought of in respect to a session moving through the queue. There are three types of Virtual Agents and each type occupies a specific state in the queue. If the normal flow for a session would be to enter the queue, route to a live agent, and then disconnect, the new flow with all three types of Virtual Agents implemented is:
1. Enter the queue
2. Route to the Pre-Conversation Virtual Agent
3. Route to the Conversational Virtual Agent
4. Route to a live agent
5. Disconnect
6. Route to the Post-Conversation Virtual Agent
The following diagram illustrates this flow. Note, all of the Virtual Agents are optional.
[image: ]
[bookmark: _Toc485300391]Deploying a Virtual Agent
[bookmark: _Toc485300392]Build Virtual Agent File
To deploy a Virtual Agent from the collection of samples found in the Virtual Agent SDK, first, open the sample (Virtual Agent SDK\Samples) in Visual Studio and (if applicable) change the credentials XML file to have your organizations credentials. Once the credentials are saved, build the project and the resulting DLL file (along with credentials file and any dependent references) can be dragged to the Plugins folder on the Chime server. Note, the ExtensionLibrary.dll should not be copied to the Plugins directory. Read on to the next section “Loading Virtual Agents” for more information about this step. 
[bookmark: _Toc485300393]Customizations for Specific Integration Samples (Optional)
Some of the sample Virtual Agents depend on minor changes to the target integration service.
Dynamics CRM
This sample creates a new Case in Dynamics and fills out some fields from information within Chime. One of the things it does is set the Case Origin field to “Chime-chat”, which is a customization of the Dynamics CRM application. The Pre-Conversation Virtual Agent tried to set the “caseorigincode” field of the Case entity to “100,000,004”. This may fail if there is no option for that field with a value of “100,000,004”. To make this customization in Dynamics go to Settings, Customize the System, then choose Entities from the left-side navigation bar. Double-click the Case entity to open and edit, then choose Fields from the left-side navigation bar under Case. Double-click “caseorigincode” to edit this field, then choose Edit next to Option Set. Add a new option with name “Chime-chat” and value “100,000,004” and finally save the changes.
ServiceNow
The ServiceNow sample depends on a similar kind of customization as the Dynamics sample. In this sample the Pre-Conversation Virtual Agent assumes there is an option of “chime-chat” for the contact type field of the Incident entity. The sample might not behave as expected if this field option doesn’t exist. To make this customization within ServiceNow, from the Admin home page, go to Data Management, Personalize Form, then Choose Incident [incident] as the table and select Next, then in the upper navigation bar choose to go back to Configuring Incident Form. Click the cog settings button in the upper-right hand corner, then right-click the Contact type field and select “Configure Dictionary”. Here you can add a new choice. Insert a new row under Choices, with label “Chat”, value “chat”, language “en”, and inactive set to false. Choose Update to save these changes.
[bookmark: _Toc485300394]Test Virtual Agent in Sandbox (Optional)
The Virtual Agent SDK contains a Sandbox.exe that can be used to test Virtual Agents outside of Chime. The Sandbox environment supports loading and calling each of the three types of Virtual Agents. See the “Sandbox_Documentation.docx” file for more information.
[bookmark: _Toc485300395]Loading Virtual Agent in Chime
[bookmark: _Toc485300396]Put Virtual Agent File on Chime Server
[bookmark: _GoBack]Chime looks for .cs or .dll Virtual Agents in the Plugins folder. This can be found at “C:\ Program Files\Instant Technologies\Chime For Lync\Plugins”. Simply drag your Virtual Agents into this folder (along with any credentials files or dependent references) to make them available for loading. Note, the ExtensionLibrary.dll file should not be included in the Plugins directory. If files were downloaded from the Internet, check that the .dll file is “unblocked” by right-clicking the file > Properties. At the bottom of the dialog, if there is a Security option to “Unblock”, please do so.
[image: ]

[bookmark: _Toc485300397]Turn on Global Setting
Virtual Agents can be turned on for the entire Chime application from the Admin section under Virtual Agents, by turning ON the “Virtual Agent Manager”. Likewise, if the setting is already on, you can disable Virtual Agents for the entire application by turning OFF the “Virtual Agent Manager”.
[image: ]
[bookmark: _Toc485300398]A Note about Timeouts
There are two types of timeouts imposed on Virtual Agents. The first is a timeout for loading Virtual Agents. This is a certain amount of time (in milliseconds) that each Virtual Agent is given to load in Chime. This loading timeout value is defined in the settings.xml file under the key “va_loadtimeout”. The default is 20000 milliseconds, or 20 seconds.
The other type of timeout is the individual Virtual Agent timeout. This applies to how long a Virtual Agent has to return from any operation other than loading. Virtual Agents that make web requests may need more time than others that are accessing local resources. This timeout value is stored in the database under the VirtualAgents table and Timeouts column. The default is 3000 milliseconds, or 3 seconds.
If a Virtual Agent times-out, you will see it as an error in the logs.
[bookmark: _Toc485300399]Enable Individual Virtual Agent
There is an individual enable/disable setting for each Virtual Agent. Only enabled Virtual Agents will be available for assignment in a queue. A Virtual Agent can be enabled if its file is found and it has loaded successfully. If a Virtual Agent has been loaded in the past, it will appear in this list. If the file cannot be found in the Plugins folder, its file availability value will be “Unavailable”, and therefore, will be set to “Disabled”.
[image: ]
[bookmark: _Toc485300400]Assign to a Queue
Once a Virtual Agent is loaded in Chime and “Enabled”, it can be assigned to a queue. Go to queue settings, under the Virtual Agents tab to assign the Virtual Agent to a queue. Once the settings are saved, the Virtual Agent deployment is complete. For information on logging for Virtual Agents see the Development section “Logging”.
[bookmark: _Toc485300401]Development
[bookmark: _Toc485300402]C# and DLL Virtual Agents
Virtual Agents can be written in a C# file or as a compiled C# assembly (.dll file). Templates for both types of Virtual Agents can be found in the Virtual Agent SDK under “ProjectInfo\Templates” directory. Virtual Agent assemblies need to reference the ExtensionLibrary.dll which can be found in the “ProjectInfo\Templates\DLL_Template\Template” folder. 
Chime will load a Virtual Agent if it finds a public class that implements the IVirtualAgent interface of the ExtensionLibrary.dll
[image: ]
Beyond implementing the IVirtualAgent interface methods, there are two class variables that will be useful. The first is a reference to an IPluginManager object. This is the interface that is used to communicate with Chime. The Virtual Agent will be given a reference to the plugin manager after it loads successfully, this will be covered in more detail in the next section. The other class variable is a VirtualAgentState object. There are three states to this enumeration, online, busy, and offline. The plugin manager will only route a session to the Virtual Agent if they are online. Using the VirtualAgentState object to communicate availability to the plugin manager will avoid undesirable situations such as routing a session to the Virtual Agent and having it timeout because the Virtual Agent wasn’t in a state to accept a session.
[image: ]
[bookmark: _Toc485300403]Sandbox Development
The Sandbox.exe in the Virtual Agent SDK is for debugging and developing Virtual Agents outside of Chime. Read the “Sandbox_Documentation.docx” in the Virtual Agent SDK under “ProjectInfo” for more information.
[bookmark: _Toc485300404]Logging
Logging messages to a text file on the Chime server is used for the Virtual Agent SDK samples to log messages prior to loading successfully in Chime. Once a Virtual Agent has been loaded in Chime, the IPluginManager reference allows them to log within the Chime queue logs (IPluginManager.LogMessageInChime). 
[bookmark: _Toc485300405]IVirtualAgent Interface
This section will walk through the 8 methods of the IVirtualAgent interface. All of these methods are called by the plugin manager at certain times to communicate with the Virtual Agent.
[bookmark: _Toc485300406]Load
When the plugin manager finds a class that implements the IVirtualAgent interface, this is the first method it calls to load the Virtual Agent into Chime. This method is used by the plugin manager to ask for the Virtual Agent to load, this might mean connecting to a web service, and for the Virtual Agent’s properties. If the Virtual Agent doesn’t successfully connect to the web service, for example, it should return false in the Tuple so that it cannot be assigned to a queue. The VirtualAgentProps fields define what type of Virtual Agent it is, and other descriptive information to be displayed in the user interface. [image: ]
[bookmark: _Toc485300407]Unload
This method would be the antonym to Load. The Virtual Agent should do any necessary work to dispose of resources or “shut down”. This method is called if the global setting for Virtual Agents is turned off. 
[image: ]
[bookmark: _Toc485300408]SetPluginManager
This method is called by the plugin manager if the Virtual Agent returns true in its Tuple from loading. By calling the method, the plugin manager passes a reference to itself to the Virtual Agent and thus giving the Virtual Agent a way to “talk back”. The next section, IPluginManager interface, reviews the different ways a Virtual Agent can ask for information from the plugin manager or for an action to be performed.
[image: ]
[bookmark: _Toc485300409]GetState
This method will be called by the plugin manager before any call to the IVirtualAgent interface except loading and unloading. The plugin manager will only continue to the next action if the Virtual Agent is online.
[image: ]
[bookmark: _Toc485300410]IncomingSeekerOffer
The idea behind this method is a Virtual Agent might be picky about the sessions it wants to work with. There might be a Virtual Agent that only wants to be connected with seekers with a certain e-mail domain, or from a certain queue, with a certain question, or sessions coming from a certain state. The plugin manager will offer the Virtual Agent a session and will connect the two only if the Virtual Agent returns true to the offer.
[image: ]
[bookmark: _Toc485300411]SeekerConnected
This method is called by the plugin manager if the Virtual Agent returns true to the IncomingSeekerOffer method with the same sessionId argument. This is the method that the Virtual Agent should do the bulk of its logic in. This method is the most likely culprit for exceeding a timeout. Also, it is important to explicitly tell the plugin manager to disconnect when the Virtual Agent is done with its work, otherwise, the session will remain stuck at that point in the session lifecycle. For example, the session won’t route to a live agent if it is connected with a Pre-Conversational Virtual Agent that doesn’t disconnect itself. See the Samples folder of the Virtual Agent SDK for samples of Conversational Virtual Agents that wait for certain messages from the seeker before disconnecting. 
[image: ]
[bookmark: _Toc485300412]SeekerDisconnected
This method is called by the plugin manager when the seeker closes their session window. This is a message to the Virtual Agent to let them know the seeker dropped out while they were connected. If the Virtual Agent is parallelized and holds multiple sessions open at once, you might want to remove the seeker from the cache of open sessions here. See the ParrotConversation class in the SuperSimpleVAs project in the Samples folder of the Virtual Agent SDK for an example of a Virtual Agent that is parallelized.
[image: ]
[bookmark: _Toc485300413]ReceiveMessage
The plugin manager calls this message when the seeker sends a message while their session is connected with a Virtual Agent. It’s the mechanism for message passing to the Virtual Agent. The return value is an acknowledgement to the plugin manger that the message was received.
[image: ]
[bookmark: _Toc485300414]IPluginManager interface
This section will overview the IPluginManager interface methods. These methods are available for the Virtual Agent to call and ask the plugin manager to do something or provide some information. They’ve been grouped into two sections, Getting data and Actions
[bookmark: _Toc485300415]Getting data
Most of these interface methods have a common parameter, the sessionID. This parameter allows Chime to get the data for the specific session the Virtual Agent is requesting. Also, none of them have a void return type because these methods provide information back to the Virtual Agent.
PreChatLookup
This method returns a PreChatData object, this is the information available to Chime about a session before it routes to the live agent. This is possibly information from the pre-chat form and the seeker’s question. 
PreChatLookupClean
This is the same as the PreChatLookup method except it will not return seeker data entries with empty values.
PostChatEvent
The PostChatEvent method returns a PostChatData object, that is, all the information available to Chime about a session after it routes to a live agent. That might be chat messages between the agent and seeker, or not if the session timed-out before routing to a live agent. Check the prevSession argument in the IncomingSeekerOffer IVirtualAgent method to learn what state the session is coming from.
PostChatEventClean
This is analogous to the PreChatLookupClean method but also strips any chat messages between the seeker and live agent of html markup.
GetChatMessages
Returns a list of messages that occurred between the seeker and live agent, these may include html markup.
GetChatMessagesClean
Returns a list of chat messages that occurred between the seeker and live agent, and they’ve been stripped of html markup.
GetSeekerDictionary
Returns the dictionary of key-value pairs of seeker information that was initialized when the seeker entered the queue, and may have been augmented by other Virtual Agents.
GetSeekerDictionaryClean
Returns the seeker dictionary, stripped of keys with empty values.
GetAllSkillTags
Returns the list of skill tags that are available within Chime, this is not queue specific.
 GetSeekerFirstName
Returns the guest’s first name
 GetSeekerLastName
Returns the guest’s last name
 GetSeekerEmail
Returns the guest’s email address
 GetSeekerSkillTags
Returns the problem area/routing tags the guests has assigned
 GetSeekerReferrerUrl
If the guest is a web visitor, returns the URL of the web page that they entered the queue from
 GetSeekerQuestion
Returns the guest’s question
 IsWebVisitor
Returns whether the guest entered the queue from a web client or not
 GetSeekerSamAccountName
Returns the guest’s SAM account name (windows login name)
 IsFromRolloverQueue
Returns whether the guest is from a rollover queue or not
 GetUriOfQueueSeekerRolledOverFrom
Returns the dispatcher SIP URI of the queue the guest rolled-over from
 IsFromRolloverSession
Returns whether the guest is from a rollover session or not
 GetGuidOfSessionSeekerRolledOverFrom
Returns the session GUID of the session the guest rolled-over from
 GetSeekerSipUri
Returns the guest’s SIP URI (for Skype for Business/Lync enabled guests)
 GetSeekerIpAddress
Returns the guest’s IP address (for guests on web client)
 GetSeekerLattitude
Returns the guest’s approximate latitude location
 GetSeekerLongitude
Returns the guest’s approximate longitude location
 GetSeekerLocationAccuracy
Returns the guest’s approximate location accuracy
 GetSeekerDisplayName
Returns the guest’s display name
GetRoutingHistory
Get the routing history of a session. The history shows what experts were sent a routing invitation and whether they accepted or declined.
GetExpertSamAccountNamesInQueue
Get the SAM account names (Windows login names) for the experts in the queue that the Virtual Agent is in.
GetExpertEmailAddress
Get the email address for the expert that accepted the session
[bookmark: _Toc485300416]Actions
Most of these IPluginManager methods have a return type of void, because they’re not requests for information, they are requests for the plugin manager to do something on behalf of the Virtual Agent.
DisconnectVirtualAgent
This is the method the Virtual Agent should use to tell the plugin manager that it is done with the session. When this method is called the plugin manager will move the session to the next state, if the keepAlive argument is true, otherwise it will move the session to the completed state. When a Post-Conversation Virtual Agent calls this method, the keepAlive argument is ignored because the session is already completed. If a Pre-Conversation or Conversational Virtual Agent ends the session by calling this method with a keepAlive argument of false, then the session is considered “deflected” and it is logged in the file of deflected sessions at “C:\ Program Files\Instant Technologies\Chime For Lync\DeflectedSessionsLog.txt” (this file is not created until a deflected session occurs).
SendCustomTabToAgent
This method allows the Virtual Agent to send new custom tabs to be displayed in the Context Window Extension of the agent that ultimately services the chat. Some common examples, are a link to the seeker’s account record in Salesforce, or a link to a new ticket that was created in ServiceNow or another ticketing system. A list of CustomTab objects are passed as an argument to the plugin manager. The definition of the CustomTab object can be found in the ExtensionLibrary.txt in the Virtual Agent SDK. Check out the PreChat class of the SuperSimpleVAs project in the Samples folder of the Virtual Agent SDK for an example of sending custom tabs to the agent.
AppendToQuestion
Some Virtual Agents may want to add more information to the seekers question. Whether their original text was not their real question, or if more information is discovered, the Virtual Agent can append additional text to the seeker’s question (that the live agent will) see by calling this method.
SetSessionResolvedTag
Each Chime session has a “resolved” tag associated with it. This is visible to the live agent in their Context Window Extension (where they can toggle it between resolved and unresolved) and in the queue history. The Virtual Agent has access to this tag too and can set it by calling this method.
UpdateSeekerData
The Virtual Agent can add key-value pairs to the seeker data attached to a session. This will be visible to the live agent in their Context Window Extension under the Metadata tab, and in the queue’s history.
AddSkillTags
Skill routing tags affect how a session is routed in a queue if the queue’s routing method is set to Skill Best-Match Hunt. When a Virtual Agent adds a skill tag, the session will try to route to an available agent with that same skill tag, just as if the guest had added it themselves in the web client. Use the other IPluginManager method GetAllSkillTags to select a skill tag that is in the system.
SendIMToSeeker
This method does exactly what it sounds like, a simple way for the Virtual Agent to send an IM to the guest.
LogMessageInChime
Virtual Agents can add logging to the Chime logs through this method. There are four levels of logging, Info, Debug, Warn, and Error, each appears in a different color in the Chime logs when viewed in a web browser. These messages enter the service logs and as such are available on the web browser and in the logs folder. 
SendTextResouceToSeeker
Virtual Agents have access to sending queue-level text resources to the seeker by calling this method. The ExtensionLibrary class TextResourceType defines the available text resources to send.
Email
Access the SMTP service within the queue to easily send emails
ActiveDirectory
Access the Active Directory service within Chime to do user lookups.
image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image1.png

image2.png

image3.png

image4.png

image5.png

