Virtual Agent Sandbox
March 8, 2016
Contents
About	1
Features	1
Configurable Data	1
Viewing Data	1
Lync Integration	2
ReadMe Resources	2
Diagrams	2
Chime session life-cycle	2
Plugin manager-Virtual Agent communication within Chime	3
Debugging tools	3

[bookmark: _Toc485301595]About
The Virtual Agent Sandbox is an application designed to aid development of Virtual Agents while bypassing integrating with Chime. While integrating with Chime is the end goal, this allows you to debug and test events that occur within Chime without the entire application’s complexity. The purpose of this document is to explain some common questions that will help you get started using this tool quickly.
Getting Started
Follow these steps to quickly get started testing Virtual Agents in the Sandbox:
1. Move any Virtual Agent files and their dependencies to the Virtual Agent SDK “Sandbox\Plugins directory”.
2. Open Sandbox.exe and load the Virtual Agent files by going to File > Load Plugins… and click Refresh Plugin List to load the Virtual Agents into the Sandbox.
3. Any Virtual Agents that are loaded successfully will appear in the list on the left and can be moved to the “Active for Testing” list on the right. Moving the Virtual Agent to Active for Testing, is akin to “Enabling” the Virtual Agent in Chime. Close the dialog.
4. From the menu bar, under Test, select the Virtual Agent event to test.
[bookmark: _Toc485301596][bookmark: _GoBack]Features
The Sandbox can be configured to point at your Visual Studio build folder, so that as you develop in this or another IDE, you can test the Virtual Agent “as you go”. Additionally, you can isolate which Virtual Agents you want to be “active” for testing, i.e., there may be three Virtual Agents in your Visual Studio build folder, but you can choose to only have the Pre-Conversation Virtual Agent be active for testing within the Sandbox.
[bookmark: _Toc485301597]Configurable Data
When a session starts in Chime there are certain data sets that are associated with the session, such as seeker data (e-mail address, SIP URI, first/last name, etc.), conversation data (queue name, skill tags, etc.), and post-conversation data (chat messages between seeker and agent, session start/end time, session wait time, etc.). The data sets are necessary to simulate a session in Chime, as such, the Sandbox has default data sets it loads. However, Virtual Agents may only be useful within certain contexts, such as the “Sales queue”, or for seeker’s e-mail from domain “@acme.com”, etc, so these data sets can be configured as well.
After startup, the following folders will be populated with their default data files. At this point, you can copy the contents of these files and save the new file, with you desired session data, in these folders:
· ConversationDataFiles
· PostConversationDataFiles
· SeekerDataFiles
Then, from the File > Configure menu you can select which text file to load for these data sets. The default data sets are loaded automatically.
[bookmark: _Toc485301598]Viewing Data
Virtual Agents may quite often make changes to these data sets, the current state of session data can be viewed from the Debug menu. You can also clear the contents of the output window from the Debug menu.
[bookmark: _Toc485301599]Lync Integration
From the Test menu, Lync Integration can be enabled or disabled. Lync integration will bind to your desktop Lync client, and depending on the Lync configuration will either listen for new conversations from a specific SIP URI or for any new conversation. When the system detects this has occurred, it will shoe-horn the Lync session into a Chime session and initiate the Chime session lifecycle (see below for diagram). With this shoe-horning, the Sandbox attempts to replace certain fields of the session data the system is using, for example, it will replace the seeker first and last name with the Lync contact card of the IM participant. This is explained in further detail in the warning message box that appears when you enable Lync integration. The Lync integration feature is designed to test concurrency within Virtual Agents, as well as test changing seeker data.
[bookmark: _Toc485301600]ReadMe Resources
The Virtual Agent SDK has a Templates directory that contains a skeleton Virtual Agent .dll project and a skeleton Virtual Agent C# file. The skeleton .dll project contains a reference to ExtensionLibrary which is necessary to implement the IVirtualAgent interface that Chime requires for integration. It contains a C# file that scaffolds out a Virtual Agent class. It has template classes and methods for loading credentials that might be needed for integration from an external XML file. The skeleton C# file implements the IVirtualAgent interface such that it can be loaded into the Sandbox, as is, as a .cs script file. Being that these are “skeletons”, there are no guarantees they do anything useful.
The Project Info folder also contains a text file that simply shows the source code of the ExtensionLibrary.dll. This library defines the interfaces and objects that Virtual Agents and the plugin manager within Chime will use to communicate.
[bookmark: _Toc485301601]Diagrams
[bookmark: _Toc485301602]Chime session life-cycle
[image:]
[bookmark: _Toc485301603]Plugin manager-Virtual Agent communication within Chime
[image:]
[bookmark: _Toc485301604]Debugging tools
To debug your DLL Virtual Agent when it’s running in the Sandbox, use the following steps:
1. Add a breakpoint in your code that you would like to debug and add this line of code to your Virtual Agent at some point before the breakpoint.
MessageBox.Show("Please attach a debugger.", "Attach");
You’ll need to use this library and add a reference to System.Windows.Forms.
using System.Windows.Forms;
2. Rebuild your Virtual Agent and move the new .dll to the folder you’re loading Virtual Agents from in the Sandbox.
3. When this line of code is run from the Sandbox, e.g., when testing the Pre-conversation event, a dialog box will appear like below. Don’t hit ‘Ok’ yet.
[image:]
4. Go to the IDE with debugging capabilities that your Virtual Agent is running from. This example shows how to proceed in Visual Studio 2013.
5. Go to Debug > Attach to Process… > choose the process that has a Title ‘Attach’, and attach to it.
[image:]
6. Now you can go back to the Sandbox application and hit ‘Ok’ on the dialog box. When you do, the breakpoint in your Virtual Agent should be hit, and you can step through as normal.
7. Don’t forget to remove the MessageBox line of code from step 1 when you’re done debugging.
image1.png
Eg.,

Try to deflect common questions such Chat with live agent
as password reset by asking the seeker

if they tried the "reset" button.

Conversational virtual agent

(optional) Post-conversation virtual agent
(optional)

Eg.,
Post session data (chat messages, session time,
expert name, seeker question) to ticketing

o system if the session resolved tag s false.
Pre-conversation virtual agent

(optional)

Eg.,
Look up the seeker's email in another system Leave Chime queue
and add their device information to their

‘ e Enter Chime queue
Chime session data.

image2.png
‘ ' Chime
PluginManager
S—1 4

ExtensionLibrary.dil ~implements the
- IPluginManager

Virtual Agents interface from
~implement the ExtensionLibrary

IVirtualAgent interface
from ExtensionLibrary |

image3.png
Please attach a debugger.

image4.png
Transport: Defauit

Qualifier: DEVRACHEL

Transport Information
“The default transport lets you select processes on this computer or a remote computer running the Microsoft Visual Studio Remote Debugging
Monitor (MSVSMONLEXE).

Attach tor Automatic: Managed (v4.5, vA0) code

Available Processes

Process
taskhost.exe

taskhostex.exe

TSVNCache.exe

TSVNCache.exe

UchMapiere

Virtual Agent Test Ha. Attach

Virtual Agent Test .

WINWORD EXE Virtual Agent Test Harness.docx - Word.
WWAHost exe Meail

YammerNotifier.exe

[JShow processes from sl users

